Using Two-Class Classifiers for Multiclass Classification

نویسندگان

  • David M. J. Tax
  • Robert P. W. Duin
چکیده

The generalization from two-class classification to multiclass classification is not straightforward for discriminants which are not based on density estimation. Simple combining methods use voting, but this has the drawback of inconsequent labelings and ties. More advanced methods map the discriminant outputs to approximate posterior probability estimates and combine these, while other methods use error-correcting output codes. In this paper we want to show the possibilities of simple generalizations of the twoclass classification, using voting and combinations of approximate posterior probabilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

International Journal of Electronics Communication and Computer Technology

This paper proposes an innovative combinational algorithm to improve the performance in multiclass classification domains. Because the more accurate classifier the better performance of classification, the researchers in computer communities have been tended to improve the accuracies of classifiers. Although a better performance for classifier is defined the more accurate classifier, but turnin...

متن کامل

Large Margin DAGs for Multiclass Classification

We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifier. For an -class problem, the DDAG contains classifiers, one for each pair of classes. We present a VC analysis of the case when the node classifiers are hyperplanes; the resulting bound on the test error depends on and on the margin ...

متن کامل

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines*

Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, howeve...

متن کامل

Multi-class and hierarchical SVMs for emotion recognition

This paper extends binary support vector machines to multiclass classification for recognising emotions from speech. We apply two standard schemes (one-versus-one and one-versusrest) and two schemes that form a hierarchy of classifiers each making a distinct binary decision about class membership, on three publicly-available databases. Using the OpenEAR toolkit to extract more than 6000 feature...

متن کامل

Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis

We propose a hybrid hierarchical classifier that solves multiclass problems in high dimensional space using a set of binary classifiers arranged as a tree in the space of classes. It incorporates good aspects of both the binary hierarchical classifier (BHC) and the margin tree algorithm, and is effective over a large range of (sample size, input dimensionality) values. Two aspects of the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002